-42p^2-32p+14=0

Simple and best practice solution for -42p^2-32p+14=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -42p^2-32p+14=0 equation:


Simplifying
-42p2 + -32p + 14 = 0

Reorder the terms:
14 + -32p + -42p2 = 0

Solving
14 + -32p + -42p2 = 0

Solving for variable 'p'.

Factor out the Greatest Common Factor (GCF), '2'.
2(7 + -16p + -21p2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(7 + -16p + -21p2)' equal to zero and attempt to solve: Simplifying 7 + -16p + -21p2 = 0 Solving 7 + -16p + -21p2 = 0 Begin completing the square. Divide all terms by -21 the coefficient of the squared term: Divide each side by '-21'. -0.3333333333 + 0.7619047619p + p2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + 0.7619047619p + 0.3333333333 + p2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + 0.7619047619p + p2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + 0.7619047619p + p2 = 0 + 0.3333333333 0.7619047619p + p2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 0.7619047619p + p2 = 0.3333333333 The p term is 0.7619047619p. Take half its coefficient (0.380952381). Square it (0.1451247166) and add it to both sides. Add '0.1451247166' to each side of the equation. 0.7619047619p + 0.1451247166 + p2 = 0.3333333333 + 0.1451247166 Reorder the terms: 0.1451247166 + 0.7619047619p + p2 = 0.3333333333 + 0.1451247166 Combine like terms: 0.3333333333 + 0.1451247166 = 0.4784580499 0.1451247166 + 0.7619047619p + p2 = 0.4784580499 Factor a perfect square on the left side: (p + 0.380952381)(p + 0.380952381) = 0.4784580499 Calculate the square root of the right side: 0.691706621 Break this problem into two subproblems by setting (p + 0.380952381) equal to 0.691706621 and -0.691706621.

Subproblem 1

p + 0.380952381 = 0.691706621 Simplifying p + 0.380952381 = 0.691706621 Reorder the terms: 0.380952381 + p = 0.691706621 Solving 0.380952381 + p = 0.691706621 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.380952381' to each side of the equation. 0.380952381 + -0.380952381 + p = 0.691706621 + -0.380952381 Combine like terms: 0.380952381 + -0.380952381 = 0.000000000 0.000000000 + p = 0.691706621 + -0.380952381 p = 0.691706621 + -0.380952381 Combine like terms: 0.691706621 + -0.380952381 = 0.31075424 p = 0.31075424 Simplifying p = 0.31075424

Subproblem 2

p + 0.380952381 = -0.691706621 Simplifying p + 0.380952381 = -0.691706621 Reorder the terms: 0.380952381 + p = -0.691706621 Solving 0.380952381 + p = -0.691706621 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.380952381' to each side of the equation. 0.380952381 + -0.380952381 + p = -0.691706621 + -0.380952381 Combine like terms: 0.380952381 + -0.380952381 = 0.000000000 0.000000000 + p = -0.691706621 + -0.380952381 p = -0.691706621 + -0.380952381 Combine like terms: -0.691706621 + -0.380952381 = -1.072659002 p = -1.072659002 Simplifying p = -1.072659002

Solution

The solution to the problem is based on the solutions from the subproblems. p = {0.31075424, -1.072659002}

Solution

p = {0.31075424, -1.072659002}

See similar equations:

| a-7=22 | | b^2+3a^2=9c | | -2x-2x=32-4 | | 12=3n | | 3a^2+b^2=9c | | 5x^2-24x+27=0 | | 4x-(3x+8)=4 | | y=7x-3 | | x+26=24 | | y=2f(6x-18)+15 | | a+(x+4)=(a+4)-(a+1) | | 3x+8=y | | .3=-5z | | x^2-4x-5=5 | | -6x+12=2x+44 | | 64=14y-6y | | (6xy)(-5x)=0 | | 5w-19w=98 | | 3(-2)+4-2(-2)-7=4(-2)+3 | | 22+22-4=x | | 5((2x^2y-2xy)-(2x^2y+3xy^2))-(2xy-15xy^2)= | | 22+22-4= | | 8p+6=7p+8 | | 0=117+13t | | 3(-5b)+4b=-44 | | 4(3x+2)=52 | | 2c^1v^7=0 | | 22+22-4=40 | | 4(3+5x)-5=107 | | (x+6)(x+5)= | | -17=a+5 | | 12-11x=45 |

Equations solver categories